Reduction of spectral ghost artifacts in high-resolution echo-planar spectroscopic imaging of water and fat resonances.

نویسندگان

  • Weiliang Du
  • Yiping P Du
  • Xiaobing Fan
  • Marta A Zamora
  • Gregory S Karczmar
چکیده

Echo-planar spectroscopic imaging (EPSI) can be used for fast spectroscopic imaging of water and fat resonances at high resolution to improve structural and functional imaging. Because of the use of oscillating gradients during the free induction decay (FID), spectra obtained with EPSI are often degraded by Nyquist ghost artifacts arising from the inconsistency between the odd and even echoes. The presence of the spectral ghost lines causes errors in the evaluation of the true spectral lines, and this degrades images derived from high-resolution EPSI data. A technique is described for reducing the spectral ghost artifacts in EPSI of water and fat resonances, using echo shift and zero-order phase corrections. These corrections are applied during the data postprocessing. This technique is demonstrated with EPSI data acquired from human brains and breasts at 1.5 Tesla and from a water phantom at 4.7 Tesla. Experimental results indicate that the present approach significantly reduces the intensities of spectral ghosts. This technique is most useful in conjunction with high-resolution EPSI of water and fat resonances, but is less applicable to EPSI of metabolites due to the complexity of the spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding.

We introduce a fast and robust spatial-spectral encoding method, which enables acquisition of high resolution short echo time (13 ms) proton spectroscopic images from human brain with acquisition times as short as 64 s when using surface coils. The encoding scheme, which was implemented on a clinical 1.5 Tesla whole body scanner, is a modification of an echo-planar spectroscopic imaging method ...

متن کامل

Spectroscopic imaging using concentrically circular echo-planar trajectories in vivo.

An alternative to the standard echo-planar spectroscopic imaging technique is presented, spectroscopic imaging using concentrically circular echo-planar trajectories (SI-CONCEPT). In contrast to the conventional chemical shift imaging data, the sampled data from each set of concentric rings were regridded into Cartesian space. Usage of concentric k-space trajectories has the advantage of requir...

متن کامل

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) in Human Breast

INTRODUCTION MR single voxel spectroscopy (MRS) to measure Choline in breast tumors has shown promise as a diagnostic adjunct to dynamic contrast-enhanced MRI exam. MRS improved the sensitivity, specificity, and accuracy for all readers, and improved the inter observer agreement between the readers [1,6]. However, single voxel spectroscopic techniques do not allow characterization of lesion het...

متن کامل

Robust fat suppression at 3T in high-resolution diffusion-weighted single-shot echo-planar imaging of human brain.

Single-shot echo-planar imaging is the most common acquisition technique for whole-brain diffusion tensor imaging (DTI) studies in vivo. Higher field MRI systems are readily available and advantageous for acquiring DTI due to increased signal. One of the practical issues for DTI with single-shot echo-planar imaging at high-field is incomplete fat suppression resulting in a chemically shifted fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2003